Role of AMP-Activated Protein Kinase on Steroid Hormone Biosynthesis in Adrenal NCI-H295R Cells

نویسندگان

  • Andrea Hirsch
  • Dagmar Hahn
  • Petra Kempná
  • Gaby Hofer
  • Primus E. Mullis
  • Jean-Marc Nuoffer
  • Christa E. Flück
چکیده

Regulation of human androgen biosynthesis is poorly understood. However, detailed knowledge is needed to eventually solve disorders with androgen dysbalance. We showed that starvation growth conditions shift steroidogenesis of human adrenal NCI-H295R cells towards androgen production attributable to decreased HSD3B2 expression and activity and increased CYP17A1 phosphorylation and 17,20-lyase activity. Generally, starvation induces stress and energy deprivation that need to be counteracted to maintain proper cell functions. AMP-activated protein kinase (AMPK) is a master energy sensor that regulates cellular energy balance. AMPK regulates steroidogenesis in the gonad. Therefore, we investigated whether AMPK is also a regulator of adrenal steroidogenesis. We hypothesized that starvation uses AMPK signaling to enhance androgen production in NCI-H295R cells. We found that AMPK subunits are expressed in NCI-H295 cells, normal adrenal tissue and human as well as pig ovary cells. Starvation growth conditions decreased phosphorylation, but not activity of AMPK in NCI-H295 cells. In contrast, the AMPK activator 5-aminoimidazole-4-carboxamide (AICAR) increased AMPKα phosphorylation and increased CYP17A1-17,20 lyase activity. Compound C (an AMPK inhibitor), directly inhibited CYP17A1 activities and can therefore not be used for AMPK signaling studies in steroidogenesis. HSD3B2 activity was neither altered by AICAR nor compound C. Starvation did not affect mitochondrial respiratory chain function in NCI-H295R cells suggesting that there is no indirect energy effect on AMPK through this avenue. In summary, starvation-mediated increase of androgen production in NCI-H295 cells does not seem to be mediated by AMPK signaling. But AMPK activation can enhance androgen production through a specific increase in CYP17A1-17,20 lyase activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pioglitazone inhibits androgen production in NCI-H295R cells by regulating gene expression of CYP17 and HSD3B2.

Thiazolidinediones (TZDs) such as pioglitazone and rosiglitazone are widely used as insulin sensitizers in the treatment of type 2 diabetes. In diabetic women with polycystic ovary syndrome, treatment with pioglitazone or rosiglitazone improves insulin resistance and hyperandrogenism, but the mechanism by which TZDs down-regulate androgen production is unknown. Androgens are synthesized in the ...

متن کامل

CAMP-dependent protein kinase enhances CYP17 transcription via MKP-1 activation in H295R human adrenocortical cells.

Steroid hormone biosynthesis in the adrenal cortex is controlled by adrenocorticotropin (ACTH), which increases intracellular cAMP, resulting in the activation of cAMP-dependent protein kinase(PKA) and subsequent increase in steroidogenic gene transcription. We have found that a dual-specificity phosphatase is essential for conveying ACTH/cAMP-stimulated transcription of several steroidogenic g...

متن کامل

A cell-autonomous molecular cascade initiated by AMP-activated protein kinase represses steroidogenesis.

Steroid hormones regulate essential physiological processes, and inadequate levels are associated with various pathological conditions. In testosterone-producing Leydig cells, steroidogenesis is strongly stimulated by luteinizing hormone (LH) via its receptor leading to increased cyclic AMP (cAMP) production and expression of the steroidogenic acute regulatory (STAR) protein, which is essential...

متن کامل

Differential Regulation of Human 3β-Hydroxysteroid Dehydrogenase Type 2 for Steroid Hormone Biosynthesis by Starvation and Cyclic Amp Stimulation: Studies in the Human Adrenal NCI-H295R Cell Model

Human steroid biosynthesis depends on a specifically regulated cascade of enzymes including 3β-hydroxysteroid dehydrogenases (HSD3Bs). Type 2 HSD3B catalyzes the conversion of pregnenolone, 17α-hydroxypregnenolone and dehydroepiandrosterone to progesterone, 17α-hydroxyprogesterone and androstenedione in the human adrenal cortex and the gonads but the exact regulation of this enzyme is unknown. ...

متن کامل

Estimation of the Mechanism of Adrenal Action of Endocrine-Disrupting Compounds Using a Computational Model of Adrenal Steroidogenesis in NCI-H295R Cells

Adrenal toxicity is one of the major concerns in drug development. To quantitatively understand the effect of endocrine-active compounds on adrenal steroidogenesis and to assess the human adrenal toxicity of novel pharmaceutical drugs, we developed a mathematical model of steroidogenesis in human adrenocortical carcinoma NCI-H295R cells. The model includes cellular proliferation, intracellular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012